n rvﬁ“””’ e £ X Q-2 2;/@

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

NACA TN No. 1852

TECHNICAL NOTE
No, 1852

REINFORCED CIRCULAR CUTOUTS IN PLANE SHEETS
By H. Reissner and M. Morduchow

Polytechnic Institute of Brooklyn

|
I

ATEMENTA
ic Release
limited

Approved for Publi
Distribution Un

|

Reproduced From r
Washington {
Best Available Copy :

April 1949 J
20000803 230

é&;é\;&‘ub ‘%‘WWQ«LW S e PR
h 3 S T

AQMos-10-2200

DISTRIBUTION ST,




NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1852

REINFORCED CIRCULAR CUTOUTS IN PLANE SHEETS

By H. Relssner and M. Morduchow
SUMMARY

The problem treated here is to design the reinforcement of a cutout
in a plane sheet in such a way that it is as nearly as possible equivalent
to the part of the structure which has been cut out. A perfect equivalence
would mean that the stresses and displacements of the structure remein the
same as those which would have appeared without the cutout.

Genereal formulas are developed for the circumferential distribution of
the cross-sectional moment of inertia I, and of the area A, of a

clrcular reinforcement required for perfect equivalence. These formulas
are then applied to some cases of external edge tractions: Hydrostatic
stress, pure shear, uniaxial tension, and pure bending. It 1s found that
in the first two cases, the required cross sections are physically possible
(1.e., I, and A. come out positive), although the required moment of
inertia 1s in some cases found to be quite high in comparison with the
required area.

In the cases of uniaxial tension and pure bending, it is shown that
constraint stresses, that 1s, additional stresses in the sheet due to the
reinforced cutout, are practically unavoldable. Simple formulas are
developed for calculating these "constraint" stresses for any given (constant)
crogs-sectional characteristics of the reinforcement ring. These formulas
are derlved on the basis of the assumptlion that the constralnts diminish
sufficiently rapidly with radial distance from the cutout so as to have
little effect at the external edges of the sheet.

To check the influence which actual boundary conditions might have on
the practical valldity of these formulas, a test was made on a plane sheet
with a reinforced circular cutout subjected to & tensile load causing
constant displacements at the loaded edges. It was found that the values
of the gtrains calculated from the exact formulas developed in this report
for an infinlte sheet were falrly similar to the values of the measured
gtrains in the specimen, except along the loaded edges, where the actual
strain decreased more rapldly toward the center of the sheet than the
calculated strains. Thls discrepancy must be due, at least in part, to
the actual condition of constant displacements at the loaded edges of
finlte length Instead of, as in the analytical formulas, constant stress
at the remote loaded edges of infinite length.
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INTRODUCTION

This investigation 1s concerned with the problem of the reinforcement
of cutouts in plane sheets. Such cutouts may serve either to make a
gtructure lighter or to provide space for personnel or accessories. The
problem of deslgning a reinforcement ring around the cutout so that it will
be elastically equivalent to the portion of the sheet removed is treated
here by an inverse method. The treatment 1s given first in general terms
and then applied in detail for several types of edge loading.

A test was made on a plane sheet with a reinforced cutout to check
the effect of some of the simplifying assumptions on the formulas developed.

This investigation was carried out at the Polytechnic Institute of
Brooklyn under the sponsorship and with the financlal assistance of the
National Advisory Committee for Aeronautics. Grateful acknowledgement 1s
hereby also made to Professor N. J. Hoff and to Dr. B. Boley for giving
the authors the benefit of the experience of the Laboratory for Adrcraft
Structures of the Polytechnic Institute of Brooklyn.

SYMBOLS
Ag effective area of reinforcement ring with rivet holes
A, cross-sectional area of cutout relnforcement ring
a radius of center line of ring
aq radius of outer circumference of ring
b half width of sheet
Cmn arbitrary constants in stress function
d radial width of ring
e ‘ distance from edge to neutral fiber of reinforcement ring
E. modulus of elasticity of ring material
Es modulus of elasticity of sheet material
G bending moment in cross section of ring
h height of web
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I moment of inertia; with subscripts e, F, and W,
the effective moment of inertla, moment of inertia of
the flanges, and moment of inertla of the web,

respectively

Ir cross-sectional moment of inertia of ring

i dimensionless parameter of moment of inertia @—E a—gr'geu(l + V)>

1 half length of sheet

kn abbreviations for products of «cj, and powers of aj

M bending moment about z-axis

N radial shear force on cross section of reinforcement ring

n order of terms of stress function

P load

Pn(r), Qn(r) coefficients in stress function (cf. equation (3a))

r radial distance from center of cutout

ro radial distance from center of cutout to neutral fiber

t thickness of sheet

T normal stress resultant

u, v dlsplacements in x- and y-directions, respectively

W, Uy same displacement system in radial and transverse
directions, respectively

X, ¥, 2 Cartesian coordinates, measured from center of cutout

Y, Z tangential and radial loads on ring per unit of
circumference

a dimensionless parameter of area of ring (%ﬁ-g%Q(l + \0>

71.(p shear strain ’

5 dimensionless parameter of width of ring (d/2a)
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€45 ey strain in x- and y-directions, respectively

€ps ecp radial and transverse strain, respectively

Kp change of curvature of ring

v Poisson's ratio

p radius of curvature

Oy s Uy"rxy normel and shear stresses in sheet (Cartesian coordinates)
0,0, 7T radial, transverse, and shear stresses in sheet (polar
r’o¢ e coordinates)

To original shear stress

P angular polar coordinate (fig. 1)

¥ stress (Airy) function

Sub-subscripts:

o original

1 constraint

T . total

GENERAL EQUATIONS AND GENERAL SOLUTIONS

Tn order to analyze the effect of a circular cutout in a plane sheet,
the stresses, displacements, and strains in such a sheet may be represented
in a polar-coordinate system (fig. 1). The original stresses and displace-
ments, before being disturbed by the cutout, will then appear 1n the form

Tar, (1)
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The cutout edges are assumed to carry reinforcement strips or angles. It

1s the purpose of the analysls of thils paper to choose the elastic properties

of such an edge reinforcement sco that the increments orl, qu’ and Trqi

to the original stresses (the original stresses being given by the sheet
edge loading) become zero or as small as possible.

Stresses

-

The stress 1n a plane sheet can be expressed by a stress function

¥(r, ) such that M
op = r 2y + rly!
op = V" s (2)
Tr¢= -G~l¢>' J

where the primes and dots are deflned by

O =

or

o
99

The function W, moreover, must be such that it satisfies the equation

MYy = 0 (3)
where
52 a?
ox Sy~

The camplete solution of equation (3) for the case considered here,
in which the edge stresses taken around the circumference of the circular
cutout have zero resultant, may be written in the form:
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®
¥ = g P cos ng + E Q, sin no (3a)
n=0 n=1
where
P.=c + C r2+c 1o r +c relo r W
0~ %0 * o0 30 ~98¢ 40 €o
= 3 -1

Py = CqqF + CpqT c3lr + ¢ T loge r . (3b)
- n -n n+2 -(n-2)

Pn.>_2 = clnr + C2nr + C3nr + thnr

J

The expressions for the functions Q are the same, except with
possibly different numerical values of the constants c.

From equations (2) and (3a) it follows that

= 22 - '
cr—E (nr Pn+ran>cosncp

n=0

Op = z P," cos ng g ()

=0

1 Y
tr@ = (% P,) n 8in no
n=0 v

The terms in Q may be obtained from equations (4) by exchenging cosine
for sine and vice versa and by meking the right-hand side minus in the
lagt equatlion for Tror '

~ |
Displacements

The radlal and transverse strains € and ch in the sheet follow

from the stresses by Hooke's law:
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t

Bgey = Egu. = 0r - Voo
E€ =FE r'1<ﬁ + ) =g _- Vo
s @ s t 7 Y o) r

where Eg 1s the modulus of elasticlty of the sheet material.

The stress-stralin relations of the reinforcement ring can be expressed
in the form (see appendix A):

, Ta . - d
8= — = + + -~ (6a)
r* Tga, T T T o
2
. D Gga o
Ka = = ——— = + (6b)
T Up
By
where, for the ring, ?r and K, are, respectively, the extension strain

and curvature, T 1is the normal stress resultant, G the bending moment

(at any @), d the width of the ring, A, and I, the cross-sectional

area and moment of inertia of the ring (which may be functions of @),
and w; and w,. the clrcumferential and radial displacements of the ring

at its outer circumference (r = aj).

Since the displacements of the ring must be the same as those of the
sheet where the ring 1s Joined to the sheet, 1t follows that the displace-
ments in ‘equations (6a) and (6b) can be obtained by putting r = a] in

equations (5) for the displacements in the sheet.

The stress and moment resultants T &and G 1in the ring can be
derived from the equations of equilibrium of the ring with the use of the
fact that the unit loads acting on the reinforcement ring are due to the
radial and shear stresses o, and Tr@ in the sheet along the circumference

of the cutout ring.

Cross-Sectional Properties in Terms of the Airy Function

Substituting the expressions, as obtained in the preceding discussion
(see appendix B), for the displacements and the stress resultants into
equations (6a) and (6b) and solving these equations for A, and I, yield
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obtained are positive for any ¢, then these are the correct and only
values for zero constraints. If, on the other hand, the resulting values
of A, and I,, are negative or infinite for certaln values of ¢, then

an elastically equivalent reinforcement cannot be obtained. This procedurs
1s considered in more detail in the following discussion.

In equations (7a) and (7b), the P's (or Q's) in the general case
represent the total stresses, that 1s, original plus "constraint” gtresses,
in the sheet. In case the reinforcement ring around the cutout is equivalent
to the cutout portion of the sheet, then the constraint stresses will be
zero and only the original stress distribution will exist in the sheet.
Hence in that case, and in that case only, the P's will represent the

“orlginal stresses. The original stresses in a sheet due to any loading of
the external edges must be finite at all finite values of r including the
center (r = 0); hence they can be represented in general by an Airy func-
tion of the form given by equation (3a) in which the coefficients Py
(or Qp) have the form (cf. equations (3b)):

5 h
Fo = cpor
P = 021r3 > (3¢)
P =c. r®+ ¢ rite
n=2 ln 3n

/

The expressions (3c) can, if d8sired, be put into equations (7a) and (7b) to
glve slightly more explicit expressions for A, and I, (as functions

of @) in terms of the constants c¢ which depend on the given edge-loading
conditions.

SPECIAL CASES

Cases of Zero Constraint Stresses

The problem of the choice of an exactly equivalent reinforcement ring
around a circular cutout in a plane sheet 13, in principle, completely
solved 1n GENERAL EQUATIONS AND GENERAL SOLUTIONS. It remains to show some
of the practical Implications of thls solution. For this purpose, the
special case will first be considered in which the edge loading on the
sheet is such that the original stress distribution can be represented by
an Airy function with only a single trigonometric term, that is,
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P

<
i

n COS ng

or ’ A ¢

<
I

Qn sin no

where P, and Q  are glven by expressions (3¢c). This class of cases

will lead to cross sections constant along the circumference of the ring.

For n = 0, equations (7a) and (Tb) <62 =c3 = 0 Dbecause of the
radlal symmetr%) lead to the result:

at s
A, = — (8a)
1-v E,
a3t a g
Ip = 2(1 - V) <} " Za " atep Cl) (8v)

The fact that the constant ¢ 1s arbitrary shows that 1n this case the
noment of inertia Ir is arbitrary; but the cross-sectional area must,

for zero constraints, have the value given by equation (8a).

For n = 1 there results (assuming symmetry with respect to the
y-axls and setting, therefore, cp = 0): .
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In order that I, be finite, 1t 1s necessary that

cl=O
d
k3=2k21<1+é-;>
Whence,
a .
E 2é+é_->
A, = at — —— (9)
Er g -2v -2 (1-3v)

2a

Again, as for the case n = 0, I, may be chosen as desired, but the

r

area A, required for zero constraints 1s fixed by equation (9).
For n = 2, by setting ¢y = cp = c3 = O to obtain a constant cross

section, equations (7a) and (Tb) lead to:

A -atgg Kn +n+ 2
T - E -
o K[n(n-l+ %n2>(l+ VE| +(n+1) [(n-?)v +:c1+2:I+2%l [(n+2)v+n-2]
(10a)
3.% 1 KEn-l)E%_:l+[(n+l)2%l_l:l
Ir = a2t = — (10b)
T

n“ -1 .-n(l+V)K+[2—n—V(2+nZl

where

2
c_a
3n 1

and K 1s prescribed by the original stress distribution. Here both the

moment of inertlia and the area are fixed 1f zero constraints are to be
achieved.
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Two technically important cases of exactly equivalent reinforcements
having constant cross sections are included in equations (8a), (8b), (10a),
and (10b) and are those of hydrostatic stress and of pure shear. This can
be readily seen in the following discussion. '

Homogeneous hydrostatic stress o, = I 'Tr@ = Q.= In“this case the

Airy function, as may be verified by equations (2), 1s given by equations (3b)
as \

_ _ 2
¥ = PO = Coor

Op = 0g = 2¢pq

From equations (Ta) and (7b) it follows, as in equations (8a) and (8Db), that

ES
Ap = = (11a)
r

I,. = Arbitrary value (11b)

These equations show that the equivalence of the reinforcement is assured for
the definite value of the cross section A, given by equation (11a) but for

an arbitrary value of the moment of inertia 1I,, of the ring. The value

of I, will then, of course, be chosen as small as is compatible with- A,
and with buckling considerations.

Homogeneous shear distribution.- This (original) stress distribution
can be expressed by Tyxy = To in Cartesian coordinates. In polar

coordinates,
—_— ] \
0, = -T, sin 20
ccp =T, sin 2¢ } (12)
'rrcp = -T, CO8 2@
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The corresponding Alry functlon, from equations (2), is seen to be

r2

V=T 7 sin 2 (12a)

signifying that (cf. equations (3c))

QQ = Clere + 0321')4.
where

€12 = %

|
o

C32 =

Using equations (7a) and {Tb), but with sine terms instead of cosine terms
and with c¢1 = ¢co = c3 = 0 to obtaln a constant cross section, gives

t .
b T X bd ﬁi (13)
(1 + v)<} + ->
2a
d
L a3t<l - 2—a> E (14)

States of Stress with Imperfectly Equivalent Reinforcement Rings

In the previous speclal cases of one trigonometric term for the Alry
function corresponding to the original stress distribution in the sheet, 1t
was geen that a reinforcement around a cutout could, theoretically, be
designed so as to produce no additional stresses due to the cutout. The
required cross sections were, in fact, constant along the circumference.

For most other cases of external edge loading, however, it will be found
that equations (7a) and (7b), intended to give full equivalence, will lead
to physically impossible (i.e., negative or infinite) values of A, and I,

for at least some values of ¢ and that zero constraints are therefore
impossible. Moreover, even in cases where zero constraints can be theore-
tically achieved, it may be found (as in the case of pure shear, discussed
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further in the following section) that the required geometric properties
of the cross sections are in practice not realizable. In such cases 1t 1s
of interest to determine how small the constraint stresses can be made for
(preferably) constant cross sections of a reinforcement ring.

The constraint stresses can be calculated without difficulty by
substituting some given constant values of A, and I, into equations (7a)
and (7Tb), using expressions (3b) for the P, (or Qp), including both the
original (given) and constraint (unknown) terms, and then determining the

unknown constants c¢,, and c¢), (chresponding to the constraint stresses)

so that equations (7a) and (7b) are identically satisfied for any angle o.
The constralnt stresses will be calculated here under the assumption that
they vanish at infinity. A number of constants then disappear 1n the
expressions (3b). This condition is selected to glve practically negligible
constraint stresses near the edges of the sheet. Because of this condition
the constraint stresses in the sheet as derived in this report must be
considered as approximate (they would be exact for an infinite sheet), but
the approximation will be good if, as is commonly the case, the constraint
stresses diminish sufficiently rapidly with distance from the cutout so as
to have a very small or negligible magnitude at the edges of the sheet.

Three special cases of edge loading are now considered in detall.

Pure shear.- It will be found, upon closer examination of expressions (13) '
and (14), that the moment of inertia of the ring required for an

exactly equivalent reinforcement in the case of pure shear 1s very high

if 1ts cross-sectional area be not higher than that required by equation (13). -
In actual design, therefore, the cross-sectional properties given by

equations (13) and (14) cannot ordinarily be realized, and constraint

stresses must be allowed. In the following paragraphs the method of cal-

culating these stresses is given in detail.

For pure shear it suffices, except for the addition of terms in r,
to employ only the trigonametric term in the series for the Alry stress
function ¥ which was used in the case of no constraints, nemely:

¥ = Q sin 29
where (cf. equations (3b))
N ot ™2 + Cp (15)
and, as before,
c .o i
127 2
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The constraints are given by the terms in cpp &and cyp, which are the

unknowns. In expressions (3b), the constant C3p must be made zero because

otherwlse it would give constraint stresses which do not decrease with
distance from the cutout. Putting equation (15) into equations (Ta) and (7b)
and introducing for abbreviation

_ a
b= 2a
kpp = cppEy | > (15a)
= -2
Ko = 008
the expressions for A, and I,. became:
Eg _at To = Zkpp
Ar =g (16a)
E. 1+ vV 165 2y
T (1 + 48) + (6 - 88)kyy, - (1 2. . v)k@
Ey a3t To(1 - 8) + (2 + 6d)kpy + (2 + 20)k) 5
Ir = 5 (16b)
EI‘ 6(1 + V) T 5 N
o " Pkop T MU
Let
E
T - at
I T TR
E adt
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The following table gives the values of koo and kAE for several

reasonably practical sets of values of thickness, area, and the stiffness
ratios 9, a, and i. The entry values for ® = 0 must be understood to
be an approximation for a very emall width of the ring. The approximation
1 =0 for very small values of d introduces only negligible errors.

PURE SHEAR
a 0 1 2 i 8
8=0; 1 =0
1;22/70 0.5 | 0.161 0.0652 i
kof/T | -1.0 | -.661 =565 | mmmmms | mmemee-
5=0.1; 1 = 0.1
koo [T | === | 00505 | -0.0682 | -m---- | --e----
k[T | - | -ebko =.30% | ---eem ] emeeee-
5 = O-l; i =0.2
Koo [Ty | ===- | -=---- -0.0675 | -0.154 [ -------
khE/Tb eReCI ISR -.284 =183 | -------
5 =0.1; 1 = 0.4
k22/To e B D -0.153 ~0.226
kue/To i BTSSR R -.149 -.0884
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Tt will be seen from this table and equations (18) and (12) that in
actual design it is difficult to avoid entirely some stress concentration

r ‘
at the cutout <51 = 1). Without any reinforcement (1.., for 8 =1=a = 0),

the stress concentration at the cutout is extremely high, for

where oqJ is the total tangential normal stress with cutout and om is
T o

the original stress (without cutout). It will be found that reinforcements

with practical cross sections, such as those in the foregoing table, will

relieve this normal-stress concentration, although they will Introduce a

smaller shear-stress concentration Tr¢. From the point of view of minimum

ratios of total stresses to local original stresses, the most sultable
cross section given in the foregoing table is B = 0.1, 1 = 0.1, o = 1.
The stresses for this section are glven in the following table. (Also,
see table I.)

PURE SHEAR

at a3t
5 = « 13 oo e——— I m——— = .
[: 0-15 Ar 2(1 + v)’ Ty oho(1 + vy Y 0 31]

rjoy | oy fTo | S fTo | Tewf" | uaf %, | oaf%0 | Trarfr%

1.0 1.46 | 0.303 0.577 -0.46 1.303 1.577

1.25 | 1.00 124 .438 .00 1.12h 1.438

Uniform single tension or compression.- In Cartesian coordinates, this
state of original stress 1s given by

where co i1s a constant.
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In polar coordinates, the same state of stress 1s:

, g h
Or, = 1?(2 - 2 cos 2¢)
Oo
= —(2 2 2
omb h( + 2 cos 2¢) ﬁ (19)
T = %? 2 sin 2¢
ro, J

The Airy function following fram equations (2) and (19) has the form

v = c20r2 + clgre cos 2¢

-

%
Here, Coy = C1o = ]:- Thus,

¥, = %?rz(l + cos 2¢) (20)

It 1s easy to show that in this case, a perfectly equivalent reinforce-
ment ring is not realizable (see appendix C). The Airy function for the
final state of stress in the sheet will therefore contain terms representing
stresses due to the reinforced cutout, that 1s, constraint terms, in addi-
tion to those corresponding to the original state of stress. Referring to
equation (20), it is seen that the Airy function for the original (super-
script o) state of stress is of the form

¥, = B0+ P2° cos 2¢

where
o 2
PO = Cpgl'
o _ 2
Py” = cppr
with
9o
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The constraint stresses, which will occur In the sheet with the reinforced
cutout, are included by merely adding to the expressions for POO and Po

the additional terms appearing in expressions (3b). Thus, ¥
WT =Py + P, cos 20
where
(21)
- 2 -2
Py = cqpf + o7 =+ Cyp
in which
Con = Cop = pe
20 12 7 4
L4
The constants c), and c in expressions (3b) can and must be set

32
equal to zero, since otherwise they would give constraint stresses which
do not diminish with increasing distance r fram the cutout. The
constant C10 has been omitted since it would not contribute anything to the

stresses or displacements. In expressions (21), cpp and cjp are given

. o]
equal to E? by the original state of stress, while C30s Cops and Cyo

are the unknowns. These unknowns are determined for a given reinforcement
ring by putting expressions (21) into equations (7a) and (7Tb), which express

and I,., and by satisfying equations (7a) and (7b) in every trigono-
metric term. With the abbreviatlons:
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the

30

22

-2 - k \
€30%1 = %30
Coply = koo

-2 _
chgal = KIJ-Q

; (22)
a _
5a =0
I. E
r Ir =

"',%— E_6(l + V) = 1
a3t
Ar By
at f}—(l + V) = a

J

following result is obtained (see appendix D):

[l

Oo al(l-V) 1
1+ ap| 2(1 +V) "2

1 W - 168\ 1 21> _ 1
:él-l+8>al<w>-§<l+5+l+v 1: d,l(l.+)+6)

21 _
> +V>E11(6-sa)+{|

%(l+38+1l)[l-on l+h6:|--i—<i l+8)[(6-86)+2:|

1+ 93+

<l + 35 + i:Dal

1+V

<l + 3% + 1]> <lwl +156> - <l + 0 + 12i v> Exl(é - 8%) + 2:]

21

s (23)

/
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Putting expressions (21) into equations (4) and omitting the terms in o0

and Cios the expressions for the constraint stresses are seen to be: N

N

r -2 I'. -)'l' r -2
Url = k30(é;_> - 6k22 <é‘1> + ’-l-kue(é;_) '.COS Qq:)

O = -k30<gi)'2 + 6k22<;i>-h cos 29 ? (2k)

-4 -2
Trgl = - [6k22<§i> + 2kh2<§i) ] sin 2¢

In order to calculate the stresses 1n a plane sheet with a reinforced

cutout under an external edge loading causing an original state of stress

(i.e-, state of stress 1f there were no cutout at all in the sheet)

given by oy = 0, = Constant, 1t is necessary to calculate &, i, .

and aq in accordance with expressions (22) from the dimensions of the
reinforcement ring, determine k30"k22’ and k), directly fram equa-

tions (23), find the constraint-stress distribution from equations (24),
and add this to the original stress distribution, equations (19).

/

The case of uniform tension corresponds approximately to the experi-
ments carried out for this report and, with the analytical calculation
of the stresses in the test specimen (appendix G), serves as an illustrative
example.

Pure-bending stress.- If an I-beam consisting of & rectangular web
and flanges, as shown in figure 1, is subjected to a pure-bending moment M
about an axis =z -‘perpendicular to the plane of the plate, then the stress
distribution in the plate will be:

Xo Ty
=T =
oyo Xy, 0
where v ‘ v
3
I, = &2,
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In polar coordinates this state of stress is glven by:

N
Oro = ﬂg;?(cos 3¢ - cos Q)
M
g, = -—r(3 cos @ + cos 30) > (25)
Py qu .
T — (sin @ + sin 3¢)
ro, = TERT\IR @ F 8in 39

It can be verified by equations (2) that the Airy function for this
original state of stress 1s given by

Wo = 021r3 cos @ + ¢ r3 cos 39

13

where
T . M
o1 = 3%3 = G

By substitution into equations (7a) and (7b) it is found (see appendix E)
that it is not possible to design a reinforcement ring producing exactly
zero constraint stresses. -

To determine the approximate additional stresses (in this case
unavoidable) due to a cutout reinforced by a ring of given dimensions,
there must, as in the preceding case, be added to the Alry function the
additional terms in expressions (3b) corresponding to the same trigo-
nometric orders as occur in Wo' Thus, for the stresses 1in the sheet

under pure bendlng with a relnforced cutout

\
¥ =Py cos ¢ + Py cos 39

B, = c21r3 + c3lr'l >~ (26)
P3-= cl3r3 + cg3r'3 + cu3r'l

7
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The constants ¢ and ¢ in expressions (3b). have been omitted since
41 33

they would otherwise violate the assumed condition of constraint stresses
decreasing to small values at the edges of the sheet. The constant c11

has been omitted since it has no effect on the Qalculations-

Substituting equations (26) into equations (7a) and (Tb), determining
the constants ¢33, Cpg; and ¢y q (cp; and c33, @s stated, are fixed

by the applied bending moment) so that equations (7a) and (7b) are
identically satisfied (see appendix F), and using the abbreviations

4., )

ait 3

"23’11_5 = g

°l+3a1-3 = K3

oty 3= kg ’ (27)
2% = x

Eﬁ 2%2(1 +¥) =«

Eﬁ :%;24(1 + V)= i /
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With the constants ku3,' k23, and kSl determined from equations (27)

and (28), the stresses in the sheet can be readily calculated by adding
the constraint stresses, as given by equations (29), to the original
stresses, as given by equations (25).

In many actual cases, the reinforcement rings are quite narrow, So
that if the approximations & = 0 and 1 = O are made only negligible
errors will be introduced. The stresses in the sheet are then functions
of only the cross-sectional area of the ring. This is true, of course,
for any type of external edge loading on the sheet as well as for a pure-
bending load. The following table gives the values of the constants k
for pure bending for different values of the area concentrated in such a
line reinforcement-

PURE BENDING
[§ =0y 1= d]
a = 2{2(1-+ V) -0 1/2 1 2
k, JK .00 1.857 1.48 1.182
i3/ 3
k. |K -2.00 -.857 -.486 -.182
23f
2k__[K -6.00 -2.31 426 3.22
21/ 3

Flgure 2 shows the stress distributlion in the sheet for o = 1' and,
for comparison, for a =0 (i.e-, no reinforcement around the cutout).

Sumary of Special Cases

Table I gives & brief summary of the numerical results of the
theoretical investigation of the special cases treated here. In this
table, W-R. denotes the ratio of the weight of material added (in order
to form the reinforcement ring) to the weight of material cut out. Assuming
that material of the same density 1s used for both ring and sheet, this

weight ratio is given by
2(52 - ig)
at

)

W.R. =
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Table I shows also the ratios, at the cutout <;i = %), of meximum

total (i.e., original plus constraint) stresses to meximum original stresses.
In the column headed '"Remarks,' the term "satisfactory' means that the

cross section concerned has practical dimensions and that at the same

time it prevents high stresses in the sheet.

An examination of table I shows that it is theoretically possible to
obtain, for the cases of hydrostatic stress, pure shear, single tension
. (or compression), and pure bending, zero or minimum constraints and minimum
total stresses by reinforcement rings. However, except for hydrostatic
stress, the required cross sections of such rings would have very high
moments of inertia but very small widths and areas. Such sectlons are
extremely difricult to design in practice. The table also shows, on the
other hand, that in all cases consldered here, not the minimum but at
leagt falrly low total stresses in the sheet can be obtained by using
appropriate reinforcement rings of practical dimensions. It appears,
moreover, that in several instances, such rings may weigh less then the
material removed from the sheet to form the cutout.

TEST ON PLANE SHEET WITH REINFORCED CUTOUT

For the experimental part of this research a test was made on &
plane sheet with a reinforced circular cutout under a tensile load,
realized by a heavy I-beam transmltting four concentrated loads to the
sheet (see figs. 3 and 4). The loads were produced by adjustable -Jack-
screws and measured by calibrated strain gages on the eight connecting
links.

Before carrying out the main test, a preliminary test was made with
a sheet of the same dimensions but without cutout. The purpose of this
preliminary test was to ascertain whether the means of ap§lication of

the load would produce a uniform tension stress (Ux = 04} Two different

total-load stages were used, with the loads distributed as evenly as
possible over the length of the I-beam. The total loads for the preliminary
test were 1475 and 3016 pounds. For the main test (i.e., with cutout),

the loads were 3000 and 4020 pounds.

The locations of the strain gages (including rosettes) together with
the results of experimental measurements in the sheet without cutout are
shown in figures 5 and 6. ’

From the measured values of the test on the sheet without cutout,
it is seen that the axial strain ¢y was distributed fairly uniformly
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throughout the sheet. At the higher load, the maximum deviations from the
average measured value were -10 and 6.4 percent while, from the expected

value of € = EiiE = 3016 Z = 2.98 x 10'“, ‘the maximum
s  0.052 x 18.5 x 10.5 x 10 '

deviation was 10.4 percent.

Near ithe loaded edges rosette straln gages were attached to show the
influence of the lateral constraint of the riveted Joint of sheet and
I-beam. The small average magnitude of the tramsverse strain €y in

the sheet near the loaded edges indicated that in fact the load was
transmitted by the heavy I-bars in such a way that the transverse strain €y

(gnd not the stress Uy) was practically zero at these edges. If the
stress oy had been zero at the edges, then the magnitude of €y would

have been much higher, namely ey = 4V€x = -O.3ex.

Having checked this type of original stress (or strain) distribution
in the sheet obtained with the particular loading used here (see fig. 3),
a clrcular hole was made in the center of the same sheet specimen and was
reinforced by a ring of dimensions given in figure 3. Strain rosettes and
simple strain gages were then placed on the sheet in the symmetric posi- .
tions indicated in figure 7. Two different loads were applied, 3000 and
4020 pounds. Since both loads produced proportional results, only those
corresponding to the higher load are given here. The results of the s
measurements are shown in figure 7.

It may be of interest to campare the strains measured in the actual
test specimen with the strains calculated, in accordance with the theory,
on the basis of an infinite sheet. Since the boundary conditions of the
test piece are obviously different from those of an infinite sheet, the
strains may be expected to be different in these two cases. A comparison
of the strains for these cases may nevertheless be instructive 1in indicating
the influence which the finite-edge conditions have on the strain (or
gstress) distribution in the sheet. Thils comparison is given by the strain
diagram in figure 7. Because of the symmetry about both x- and y-axes,
the theoretical values for the infinite sheet are given only at the points
indicated in the diagram.

From figure 7, it 'will be observed that, gqualitatively, the finite
sheet behaves quite similarly to the infinite sheet. For example, in
both cases the transverse normal strain (th decreases steadlly

r

=1.38
al -
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with ¢ from & maximum at @ = 0° to a minimum at ¢ = 90°.
Also (G ) near the rigid bars varies in both cases from a
x=9 .2 in.

maximum at the edge of the sheet to a minimum in the center. (See graph
below strain dlagram, fig. T7.) The radial strains were all of a relatively
low order of magnitude, but it can be stated that here, also, both the
order of magnitude and the variation of € corresponding to the calcula-

tions for an infinite sheet were similar to those of the test specimen.

The effect of the particular boundary conditions of the test plece
appears to be pronounced at two places. The maximum transverse normal
strain e@ (perpendicular to the radius and, at ¢ = 0, in the direction

of the general tension stress) near the cutout ring (gi = 1.38> is higher
1
for the test plece than for the infinite sheet, the percentage difference

5.06 - 4.07

5.06
bars (see graph below strain diagram, fig. 7) decrease more sharply in the
actual specimen than in the specimen calculated as an Infinite sheet, the

3.17 - 2.32
2.32
cent, although the analytical values were practlcally equal to the experi-
mental values at the quarter polnts of the sheet. The difference at the
center must be due to the fact that in the actual test plece the rigid
bars caused constant axlal dlisplacements and zero transverse displacements

at the finlte loaded edges, whereas 1n the theoretical work an infinite
sheet was treated wlth constant axial stress at the remote loaded edges.

being X 100 = 19.6 percent. The axial stralns near the loaded

local percentage difference at the center being X 100 = 36.6 per-

The maximum strain measured in the sheet was the shearing straln

at @ = 459, and it will be observed that this value (7-66 X lO-u) was
practically unaffected by the difference in the boundary conditions between
the actual and the theoretical speclmen, since the experimental and the
theoretical values are practically equal.

The calculations for the infinite-sheet speclimen, based on the formulas
developed in the analysis preceding the experiments, are shown 1in Appendix G.

It may be remarked that in-these calculations account was taken of
the rivet holes in the cutout ring. These holes had the effect of reducing
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the actual cross-sectional area of the ring. To determine the amount of
this reduction, a test with the same slze and spacing of the rivet holes
as in the sheet speclmen was carried out. ' .

The ratio of the effective area to the full geometric. area was thus
found to be 0.80. Therefore in the calculation of the theoretlical stresses
in the test specimen used in the experiment the cross-sectional area of the
cutout ring was taken as 0-80 times the full geometric area.

CONCLUDING DISCUSSION

The problem first considered was what must be the cross section of
a ring reinforcing a circular cutout in a plane sheet in. order that the
stresses in the sheet remain unchanged by the cutout. The general solution
to this problem is given by equations (T7a) and (Tb). In these equations
the required distributions of mament of inertia I, and of cross-section

area A, along the circumference of the reinforcement ring are expressed
in terms of the stress function (with coefficients P, and Q, as

defined by equations (3a) and (3b)) for the original stress distribution,
that is, for the stresses in the sheet without cutout or reinforcement

rings.

Tt was found that these expressions in terms of the circumferential
angle ¢ for I, ~and A, lead to physically possible (i.e., positive) .

values only in a limited number of cases (for example, when the original
stress function has no or only one trigoncmetric term, as in centric
symmetry and 1n pure shear, respectively). In the other cases, which
include uniaxial tension and pure bending, constralnt stresses, that is,
additional stresses due to the reinforced cutout, are unavoidable. A
method of calculating such stresses in the sheet for a given (constant)
cross section of the reinforcement ring was developed, based on the
requirement that the constralnt stresses and displacements vanish guffi-
clently rapidly with increasing distance fram the cutout so as to have a
negligible influence at the edges of the sheet. The formulas, which are
straightforward and convenient to apply, were derived in detail for the
cases of pure shear, uniform axial tension (or compression), and pure
bending. For example, in the case of uniform axial tension, 1t 1s
necessary merely to calculate the values of the dimensionless constants iy
and a4 (proportional, respectively, to the cross-sectional moment of

inertia and the area of the reinforcement ring) from the given data in
accordance with the definitions, equations (22), of 1; and a;. The

values of the constants k3g, kpp, and k), follow from the elastic
properties of the ring and are determined by equations (23). The
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constraint stresses (which must be added to the origlnal stress dlstri-
bution o0y = 0y = Constant) then follow readily from equations (24).

In the formulas derived for the cases deemed technically important,
it can be seen that for the narrow reinforcement rings commonly used only
small errors will be introduced in the mumerical calculations if the moment
of inertia is taken as zero.l The results of the analysis therefore show
that the stresses in a plane sheet with a cutout are a function only of
the cross-sectlonal area of the ring reinforcing the cutout, while the
moment of inertia ig of practically no influence. This means that
the ring experiences primarily tensile or compressive stress result-
ants and not bending moments.

In general the approximation given by the formulas of the report will
be closer the smeller the constraint stresses are at the edges of the finite
sheet. '

In the experimental part, a test was made of a plane sheet with a
reinforced cutout subjected to a uniform tensile displacement. The
purpose of this experiment was to see how great an error is produced by
boundary conditions which differ from those for which the theoretical
formulas are exact. In particular, the sheet specimen was (of course)
not infinite, while at the loaded edges, the axial displacements, and not
the stresses, were constant (with zero transverse displacements there).
~ On the two other opposite edges the normal and the tangential edge tractions
were zero.

Tt was found that qualitatively the strain (and therefore stress)
distribution in the sheet specimen was quite similar to that predicted
by the theoretical formulas for an infinite specimen with the same rein-
forced cutout. Quantitatively, the chlef effect of the actual bouﬁdary
conditions seemed to be at the loaded edges where the axial strains
decreased more sharply toward the center of the sheet than predicted by
the formules for the infinite sheet.

The transverse straln e@ at the transverse center line of the

sheet near the cutout <? = 0, EL = 1.38> was actually about 20 percent
l g

lThis, of course, is true only if there 1s no concentration of the
original stress along any radius of the cutout circle, a case which appears
for a concentrated load at an external edge but which was not considered
in this report.
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higher than according to the theory for the infinite sheet. In other

respects, however, the quantitative results appeared not to be greatly

affected by the particular boundary conditlons of the test specimen, .
gince the experimental values of the strains were fairly similar to the

analytical values based on an infinite sheet.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., June 27, 1947
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APPENDIX A
STRESS-STRAIN RELATIONS OF REINFORCEMENT RING

The theory of curved beams states that the change of curvature Kp

of a ring due to a bending moment G 1is

P ¢
r EI
r e

where the effective moment of inertia I, 1is given by

and where r = r, denotes the radius of the neutral fiber, while b is

the width perpendicular to the plane of bending of & cross section, and s,
moreover, is given by (cf., for example, reference 1)

—al-e

A
a
1
ar

AT
al d

The following table, however, shows that for & cross section of I-shape
(for example) with values of d/a up to 0.4, a ring may be treated as a
straight beam, so that 1t is permissible to put

o"S
|
L
1
ST
I
o))

()
[}
o e
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COMPARISON BETWEEN CURVED BEAM AND STRAIGHT BEAM

a
a/a 8 - 3 To e Ir
(in.) (in.) (1n.% (1n.")
0.2 6 5.973049 0.041855 0.04187
.3 6 5.93044 .119638 . 124966
o 6 5.865331 .252761 .260266
It follows then that
B 5
r ErIr

as in equation (6b). The extension strain ¢, and the curvature K, of

a ring are given in terms of the radial and tangential displacements Uy

and Uy, at the neutral fiber r = r, by the following well-known relations:’
o]

v
€a=u + u
Tr tO I‘O

Kra? - -(uro " ﬁro)r=al

Since the radial displacement w, of the ring for any given ¢ will
be constant along the width of the ring, it follows that

Rrag ) _(ﬁr * ﬁ%>r T - -(ur " ﬁa

o I‘=al

The tangential strain, however, will vary along the width as, in fact,
can be seen from figure 8,
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Hence

_{(; 5 &
Gra— u_t+ur+ur2a

Thus, equations (6a) and (6b) follow.

35
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APPENDIX B

EXPLICIT EXPRESSIONS FOR STRESS RESULTANTS AND
STRAINS OF REINFORCEMENT RING

From figure 1l the following equilibrium conditlions between the stress
resultents T, G, and N in a ring and the unit load forces Y and Z

can be derived:
T+N=-Ye = '(Trcp) } aqt (B1)
_ r=a,
ﬂT-T=—Za=-(o) a-t
1 g, 1 (B2)
1
G- Nr, = -Yae = -(Trcp>r=a a,te
1 .
Noting that r & a, e & 5 (see appendix A), the last equation can be
written as .
G -Na=-71 at < (B3)
rel’ 2
Equations (Bl) to (B3) can be solved for T and G as follows:
From equations (Bl) and (B2),
T+1T=at (or - Trcp) r=a, (B4)

(B5)

Moreover, from (Bl) and (B3),
-Ta - a et T do +

G =
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re

By putting o, and T in terms of the stress function V (relations (2))
X equation (B4) can be directly integrated with the results:
|

for n ¥ 1,

-1 !
T = alt r ur>r=al + ¢, sin @ + C3 cos @

- 1 -
G = ajt %‘(r lwy)rzal-_ algt (r 2¢0r=al + ¢y - cya sin @ - c48 cos @

‘ for n =1,

Ty =cp 8in ¢ + c, cos @

3

Gy = -coa s8in ¢ - ¢c.a cos @ + cq + alet (r’l\f"‘ r-QW)r=al

3

Substitution for ¥ by means of relations (3) will give expressions
for T and G 1in terms of P, and o

Expressions in terms of P, for the extension strain and curvature

can be obtained by putting equations (2) into equations (5) and integrating
the latter to find u, and ut.© Thus,

2Two arbitrary functions fl(r) and f2(¢) will appear as a result

of this integration. However, 1t can be shown that, for compatibility
between deformation velues (involving also the shear strain 7r¢) and

the equilibrium conditions, the functlions must have forms which are
. already included in the general expressions (3a) and (3b) for the Airy
function.
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(“r "r fwdr+l(¢+¢)-V(¢+w)

. o a 1][4.‘\[)‘ " {IJ: d
B (o, + iy + i ) - gaf V' L (- 2)

r

)] d !
—V(-—+§a‘lf) - vy

By using the expression (3a) for V¥, the strains in terms of P, and @
are obtained.
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APPENDIX C
IMPOSSIBILITY OF ZERO CONSTRAINTS IN CASE OF UNIFORM TENSION
(Ux = Constant)

From the expression (20) for vy,

W
0'02
PO=-EI'
o}
_ 0.2

Substituting these values into (7a) and (7b), putting co = c3 =0 (for

symmetry about both x- and y-axes), and simplifying give the following
expressions for the distribution of cross-sectional area and moment of
inertia:

A - oat Eg 1 + cos 2¢
T Er (1 -v) + L+ v+ 451+ v)] cos 29
, o1
. a3t Eg (1 - 8)(1 + cos 2¢) - et
P, =

Er 2(1 - v) + 6(1L + v) cos 2¢

where & = d/2a.

It is not difficult to see that I,. can be made positive for all

values of @ (by choosing a proper value for cl) but that A. neces-

garily becomes negative and infinite for some values of ¢. Hence a
perfectly equivalent reinforcement 1s not reallzable in this case.
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o) N oo(1 - V) _
2 thp=a [;(1 + V) k3é]

O . 1 by - 165
5 - 21{22 = o [co<-2—+ 26) + k22(6 - 8%) + k1+2 (—f—:_\)-_)]

*

k
l-v 30
K =1 [;2(1 T V)% 'ET]

. 6o R
i:(l = 8) + kop(l + 38) + kug(l +8) =1y T T Fee T TR

The first of these four equations can be solved immedliately for k30' The

third equation determines the value of K, which, however, has no Influence

on the stresses in the sheet. Hence this equation need not be considered
any further here. The second and fourth equations can be solved simul-
teneously for ky, and k),. The results are given by equations (23).
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APPENDIX E

PRACTICAL IMPOSSIBILITY OF PERFECT EQUIVALENCE IN

CASE OF PURE BENDING

From the expression for V,, it is seen that, corresponding to the

(original) state of stress due to pure bending,

- 3
Py = ey
P3 = 0131“
M
Chq = 3C,, = ~—
21 = 3°3 7 T3,
. ]
Substitution into equations (7a) and (7b) leads to the following expressions
for A, and I, (cq =¢, = 0, because of the antisymmetry about the x-axis
and the symmetry about the y-axi%): ’
°3
N cos @ + cos 3@
at 38; ©Cp3

A, =
(2 +98)(1 +v) [6-2v+ 53V -1)
(2 + 98)(1 + V)

J cos @ + cos 3¢9

()
30 {:[5352215 - 6(1 + 6)} //kl - 26)} cos @ + cos 30
——— (1 - 2B)

QL'r(l + V) cos 3CP

I, =

It will be shown now that Ar and T, for zero constraints can both be

made positive for any ¢ only if the value of the ratio b (identical
with d/2a) is extremely low, too low in fact for practical purposes.
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From the second of the two equations, in order that I,, be everywhere
positive it ls necessary that

3
2

= 6(1 + d)
ay te )

13

Substituting, then, for c3 into the expression for the area A, glves

at 2(1 + 3) cos @ + cos 30

(2 + 98)(1 + v) 6-2v+8(3v—1)-
T+v)(2+ 96)' cos @ + cos 3¢

Arz

The value of thls expression for A, wlll be positive regardless of ¢ if

and only if
6 -2v + d(3y - 1)
(1 + v)(2 + 99)

2(1 +9d) =
With vV = 0.3, the positive root of this quadratic equation in 8 1s
5 = 0.0068k4

In practical design, this low value for & (identical with a/2a, fig. 1)
wlll be incompatible with the large required moment of:inertia

adt

AT

I
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The second and fourth equations are linear equations in k2? and kh3’
which can therefore be readily solved for these two unknowns. By
eliminating k3 from the first and third equations, k31 can be solved

for in terms of k23 and kh3' The results are given by equations (28).
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APPENDIX G

CALCULATION OF STRAINS IN INFINITE-SHEET SPECIMEN WiTH SAME

REINFORCED CUTOUT AS ACTUAL SPECIMEN

The dimensions of the specimen are given in figure 3. From the
dimensions,

3.66 inches

o
"

fo
Il

3.5 + 2 - 3.81 inches

1 16
t = 0.052 inch
X
a 1
s=4 . 16 _o.0u
S 2% 3.6 ok26
3
A, = 0.80 <£% x o.h3%> -~ 0.1085 square inch

he(1 +V) 0.2085 x 1.3 _ 0.7k
at 3.66 x 0.052

‘\ = X 0.434 -
1 - 1.1 x 1073 inch

I =
r 12

Ir 7.8 x1.1x1073 3

_é- 3 - = 3.37 X lO—
a’t (3.66)° x 0.052

1, = 6(1 + V)

From equations (23) substitution of the'preceding values leads to the s

following numerical results for the constants k30’ Kon s and kME:
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k3O = -0.17300

k42 = -0.2520,

From equations (24) it then follows that the calculated constraint
gtresses in the sheet will be:

]

- - >
O -o.173<r—> . o.1368<3i> b 1.008(%) cos 2¢
UO al a | a .

5 |
—g—l - o.173<%>'2 + o.1368<§i)"1L cos 29

o}

r -4 -2
Gz)l = - %.1368(%) - o.5ol+(;—i) :’ sin 20

The calculated stresses without cutout (see equations (19)) are:

0o )
g = = (1 - cos 2
r 2( ®
%o
crcpo = E?(l + cos 2¢)
9o .
Trcpo = —» sin 20

Hence, adding the constraint to the original stresses, the total stresses
in the sheet at any point (r, ¢) are found to be:

r\-2 r \~4 r\"2
0, =0, 01500.-0'173<Ei> - [§.500-+O.136S<éi) - 1.008<éi> -J cos 2@

2 -}
oy = 9 {0.500 + 0.173(23—1“1> + [0.500 + o.1368<51ll> ] cos 2@}

r\ r\k .
Tr@ =05 | 0.500 + O.5Oh<5i> - O-l368<%I> sin 2¢
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From these stresses, the strains expressed in polar coordinates at any

point are:
1
¢ = Es<0r vo @

1
= = -V
Gq) Es<0cp OI>
2(1 + V)
v~ T E, ro

The strains €. in the direction of the load were obtained by first

X
determining the Cartesian stresses o, and cy according to the relations:
il |
Oy =5 @r + c@ - <°r - °q>> cos 2¢ + 2Trq> gin 2¢ ,
o =={(6.+0 )+ (0, -0 cos 2¢ - 21, sin 2¢
y 2 r ? r Q ro .
The strain ¢, 1s then readily obtained by

€. = 'l (o} - VU
AR
The value of the original stress o, without cutout is

ip
o, = —
o 2ut
where 2b 18 the width of the sheet. For the test specimen and for a
load of 4020 pounds,

4020 ‘
= 4160 pounds per square inch ¢

c

°© = 18.5 x 0.052
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For the strain this can be expressed as:

_ 4160
o  10.5 X 106 X h.02

€ = 0.99 X 10’“

X

4

The actual measurement gave 1.04 X 10™ *, that is, an average inaccuracy

of 5 percent in the strain gages.

The numerical results of the preceding calculations are given in the
data diagram (fig. 7).



50 ' NACA TN No. 1852

REFERENCE

1. Timoshenko, S.: Strength of Materials. Part II - Advanced Theory
and Problems. Second ed., D. Van Nostrand Co., Inc., 1941, ch. II.




NACA TN No. 1852

TABLE T

51

SUMMARY OF THECRETICAL INVESTIGATION OF SPECTAL CASES

Ratios of maximum
total stresses td

maximum original
stresses at r/al =1

Remark
Loading _d.. Alt‘ _T}‘_ W.-R. o 8
2a a &3t (l) o o T ?9_ (3)
53; aﬂl T > %
ol %% | F% o
(@)
0 |1.43 |Any 2.86 {1.00 |1.00 |1.00
Hydrostatic .1{1.43 [Any 3.04 11.00 |1.00 |1.00 | 2 Zero constraints;
0, = Constant satisfactory
.211.43 |Any 3.21 }1.00 |[1.00 [1.00
Zero constraints, but L.
.21 .428l0.1025| .0875|1.0 (1.0 [1.0 too high to conform with
A, and d/a
Pure shear
1} .385| .0032| 457 {-.46 [1.30 [1.58 | 4 [satisfactory
Txy = Constant
Zero constraints, but L.
.1} -550] .1155] .865 [1.0 (1.0 li.0 too high to conform with
A, end d/a
Low constraints, but I,
.11 .882} .115 [1.69 .822] .87211.31 too high to conform with
A. and d/a
Single uniform Low constralnts, but L.
tensile (or 21 .795] -1025|1.232 .783) .79011.43 | 3 too high to conform with
. compressive) A, and d/a
stress
o, = Constant |0 61510 1.23 LT5011. 40 [1.63 Satisfactory
.1) .u61 0 .682 | .512{1.34 {1.59 satisfactory
Almost zero constraints, but
0 .385] .0320| .770 {1.015} .995|1.015 I, too high to conform
Pure bending 2 | with A, and d/a
0 .38510 <770 §1.01 f1.10 {1.34 Satisfactory

14.R. ratio of the weight of material added (to form reinforcement ring) to the weight

of material cut out.

2No reinforcement.

. 3n

satisfactory" means that the cross section has practical dimensions and that at the

same time it prevents high stresses in the sheet. ''Zero constraints" means that the rein-

forcement ring is exactly equivalent to the portion of the sheet which has been cut out.

_NACA -
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20

n; @=0, r/ul=l
b6 —+—T—1 - __ m, n, p; Q=l,r/a; =1 ]

\ —-—-—m,n, p; a=0,r/a|=l.25__
——— m, n, p; @=1, rlay =1.25

Stress ratio

\/

.6
O 10 20 30 40 50 60 70 80 90 100 10 |20

%, deg TNACA

Figure 2.~ Total-stress distribution in sheet produced by pure bending,

Orl + Uro chl + oq)o TI'Q’]_ + TI‘CPO
=0 M= =, n = ———, p=— ;6 = o
r e ro

max max max
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P P P P
._2%%" 4%|I * 4|!Z“ * 4g| 2_?“9“__
h 'll LOAD LINKS
HEAVY I-BEAM )
TRANSMITTING - 6
LOAD
1
PLANE-SHEET .
THICKNESS, 1 =0.052
1
0.191 o.usn"‘ X |lo“
— 7 JT(_ 0 4 7// L' DIAMETER
A & r s " -
! ie=d) ole
0.052" ¢ &
.It. y - ‘ | . %
CROSS SECTION OF |
REINFORCEMENT RING
5ll_‘
L7 6 (—-2 a)—“""
6 "
P P P P
184+ &2b) -

Figure 3.- Experimental setup.
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Test specimen.

Figure 4,-
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369 364 360 369
746 764 729 746
i7" I 7" I 17"
4 ITY 32 1T %32
Pay A PaN A ‘
1.56 .52 1.56  1.59
3.12 2.98 2.99 3.12
9-2" 3ll 7“ 7" 3"
}‘4 Tg"i'3TE+3T§"'4T——‘|
—(M MM e
1.56 173 1.T7 1.60 1.48
3.24 329 —-—---318 2.9/
9.2"
1.61 .59 1.65 1.68
3.20 3,02 306 3.7
——L PaN paN PaN A
363 379 372 374
760 770 749 769

Figure 5.~ Measured strains €y X 104 in direction of loading. Top

values are for a total load 4P of 1475 pounds; bottom values are for
Rosette, A; simple strain gage, [7)

a load of 3016 pounds.
not exactly to scale,

Drawing

o7
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Figure 6.-

NACA TN No-. 1852

P P P P
PaN Vay a PaN

-0.09 =007 -0.08 -0.26
-.20 -.15 - 15 -.60
-0.30 -0.08 -0.05 -0.08
-.60 - 14 =13 =17

Pas D VN PaN

P P P P

Measured strains €

y

X 104 transverse to direction of loading.

Top values are for a total load 4P of 1475 pounds; bottom values are

for a load of 3016 pounds, Rosette, A.

Drawing not exactly to scale.

For dimensions see figure 5.
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980 972 1000

963
l‘t]»— 4.53“—«#1»' 4.53"#4.53“ ﬁf’] s

6
m-—t;.oebm— 4.06"—m—4.oe“—m—4.os"—m L
. : : ) |
m5.01 3.77 2.82 3.82 4.80
th (4.26) (3.84) (3.17)
10.3"
‘ x=9.2"
i \!.94(1.88)
% . 595(.935)
| 4.13 5.06 7.69 (7.62)
32.6"| -.80
248 y y
] 3.91| (4.00)
|.——7.75 -.79| (- .488)
.25 (0)

l< ol
gl =
4 — X—== - g ——% —
3 — W th .__%
e — —e
| — (éx)“g_zn against y —

0 — —0

Figure 7.- Strain measurements on plane sheet with reinforced cutout.
Total load, 4020 pounds; rosette, A ; simple strain gage, m; values
in parentheses are corresponding theoretical values for reinforced
cutout but for an infinite sheet (see appendix G). For each rosette,
the top, middle, and bottom values are, respectively, normal transverse,

normal radial, and shear strain times 104. For each simple gage,
values given are those of axial strains € X 10%,
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Figure 8.- Contribution of curvature of cutout ring to extension at outer N

boundary of ring. Uy, =& - .
a
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